Q.P. Code: 11322

Third Semester B.Sc. Degree Examination, November/December 2019

(CBCS Scheme)

CHEMISTRY - III

Time: 3 Hours] [Max. Marks: 70

Instructions to Candidates:

- 1) The question paper has Two Parts.
- 2) Answer Both the Parts.
- 3) Draw diagrams and write chemical equations wherever necessary.

PART - A

Answer any **EIGHT** of the following questions. Each question carries 2 marks: $(8 \times 2 = 16)$

- 1. Define temperature co-efficient of a reaction.
- 2. State second law of thermodynamics.
- 3. Calculate the entropy change during the vapourisation of 1 mole of liquid water at 373 K and 1 atmospheric pressure. The molar enthalpy of vapourisation of water at 373 K is 40.67 kJ mol⁻¹.
- 4. State Nernst heat theorem.
- 5. What is an adsorption isotherm?
- 6. Mention two applications of bleaching powder.
- 7. What are Ellingham diagrams?
- 8. How does an alcohol react with metallic sodium? Give equation.
- 9. What is Lucas reagent? How does a tertiary alcohol react with it?
- 10. Why is para nitrophenol more acidic than phenol?
- 11. Explain the action of lithium aluminium hydride on epoxides.
- 12. What are Grignard reagents? Give an example.

1/2

Q.P. Code: 11322

PART - B

Answer any **NINE** of the following questions. Each question carries 6 marks: $(9 \times 6 = 54)$

- 13. (a) Derive an expression for the rate constant of the second order reaction A + B → products where the concentrations of the reactants A and B are not equal.
 - (b) Rate constants of a reaction at 300 K and 315 K are 4.28×10^{-3} s⁻¹ and 1.3×10^{-2} respectively. Calculate the activation energy of the reaction. (R = 8.314 JK⁻¹ mol⁻¹).
- 14. (a) Explain the spectrophotometric method for the study of kinetics of the reaction potassium persulphate and potassium iodide.
 - (b) Explain the determination of order of a reaction by half-life method. (4 + 2)
- 15. (a) Explain the different steps involved in Carnot's cycle.
 - (b) Calculate the work done by 2 moles of an ideal gas during its isothermal reversible expansion from a pressure of 90 kNm⁻² to a pressure of 40 kNm⁻² at 300 K. (R = 8.314 JK⁻¹ mol⁻¹).
- 16. (a) What are homogeneous and heterogeneous catalysis? Give one example for each.
 - (b) Explain bimolecular surface reaction. (4 + 2)
- 17. (a) With the help of Ellingham's diagram explain the selection of reducing agents taking suitable examples.
 - (b) Give one method of preparation of borazole. (4 + 2)
- 18. (a) Explain the extraction of uranium from roasted pitch blende.
 - (b) Give any two functions of nitrogen as essential plant nutrient. (4 + 2)
- 19. (a) Write the mechanism of oxidation of ethylene glycol using alkaline potassium permanganate.
 - (b) What is Meerwin Pondorff Verley reduction? Give an example. (3 + 3)
- 20. (a) Explain the preparation of glycerol from propene.
 - (b) How are thiols converted into alkyl sulphonic acids? (4 + 2)
- 21. (a) Explain the mechanism of conversion of phenol into salicylaldehyde.
 - (b) Give an example for a trihydric phenol and write its structural formula.

(4 + 2)

Q.P. Code: 11322

- 22. (a) (i) Give the preparation of ethers from alcohols.
 - (ii) What are epoxides? Give an example.
 - (b) How does ethylene oxide react with nitrogen nucleophile? (4 + 2)
- 23. (a) Describe the manufacture of urea.
 - (b) How is methyl lithium converted into ethanoic acid? (4 + 2)
- 24. (a) Explain the two types of polymerisation with one example for each.
 - (b) What are thermosetting plastics? Give an example. (4 + 2)
- 25. (a) Derive Gibbs-Helmholtz equation.
 - (b) The equilibrium constant of a reaction at 298 K is 0.5. Calculate the standard free energy change of the reaction. (R = $8.314 \, JK^{-1} \, mol^{-1}$) (4 + 2)